

SEALING ELEMENTS

FKM 75-compound 514260 - Technical Data Sheet

1. Introduction

FKM 75-compound 514260 is a copolymer of Hexa-Fluorpropylene and Vinylidene Fluoride with ca. 66% Fluorine. In conformity with ASTM D2000 M2HK 710 B37 B38 C12. Made of Original Viton[®].

2. Product Description

Chemical Composition :		Copolymer of Hexa-Fluoropropylene and Vinylidene Fluoride,			
		66% Fluorine			
Physical form	:	O-Rings / Mouldings			
Colour	:	Black			
Odour	:	None			
Storage stability *	:	Excellent			

* : Following ISO 2230 conditions

3. Physical Properties

Test Method	Norm	Test Values		
Hardness on slab	ISO 868	75° ± 5° Shore A		
Tensile Strength at break	ISO 37	11,52 MPa		
Elongation at break	ISO 37	233%		
Specific Weight	ISO 2781	2,32		
Modulus at 100%	ASTM D 945	7,2%		
Compression Set	ISO 815			
22h/175°C, on slab		4,6%		
22h/200°C, on slab		7,0%		
Heat Ageing 70h/250°C	ASTM D 573			
Hardness Change		+4°		
Elongation Change		-34%		
Tensile Strength Change		+3,7 MPa		
Weight Change		0,02 gr		
Immersion in oil n°2, 70h/150°C	ISO 1817			
Hardness Change		+0,5°		
Volume Change		+4,56		
Elongation Change		-6,5		
Tensile Strength Change		+0,47 MPa		
Immersion in Fuel C, 70h/23°C	ISO 1817			
Hardness Change		-1°		
Volume Change		+3%		
Elongation Change		-3%		
Tensile Strength Change		-0,23 Mpa		

4. Temperature Resistance

- -20° to +204°C
- TR10 (low temp. resistance): -17°C

5. Chemical Resistance

Concentra	ted acids	:	excellent
Acetone		:	bad
Hydroxides	s	:	excellent
Benzene	:	excellent	
Crude oil			excellent
Toluene		:	excellent

Fuel C	:	excellent		
Gasoline	:	very good		
ASTM oil 3	:	excellent		
Methylene chloride	:	very good		
MEK	:	bad		
MTBE	:	bad		
Water < 100°C	:	good		

6. Advantages

• Excellent resistance to oils, lubricants, most mineral acids, aliphatic and aromatic hydrocarbons.

7. Safety and Handling

Read and be guided by the recommendations in the DuPont Dow Elastomers technical bulletin H-71129-02, 'Handling Precautions for Viton[®] and Related Chemicals'.

This information is, to the best of our knowledge, accurate and reliable to the date indicated. The above mentioned data have been obtained by tests we consider as reliable. We don't assure that the same results can be obtained in other laboratories, using different conditions by the preparation and evaluation of the samples.

01.10.2007